
Internet Olympiad ( First Round)

1. On Mondays, Wednesdays and Fridays one dollar is converted to 31
roubles, on Tuesdays, Thursdays and Saturdays one dollar is converted
to 30 roubles. Conversions are not executed on Sundays. Starting from
the initial amount of 1000 dollars how many weeks will it take to in-
crease this amount to 2700 dollars taking advantage of the fluctuations
in exchange rates ?

Answer: 11 weeks.

Solution: In two workdays the initial amount of dollars, x, can be
increased by 1

30 , i.e. it can be turned into (1+1/30)x by converting
the dollars into roubles at a rate of 1 dollar for 31 roubles and then
converting the roubles into dollars at a rate of 30 roubles for a dollar
the following day. There are three pairs of workdays in a week. After
31 pairs of workdays the following sum of dollars can be obtained:
2700$ < 1000e$ < 1000 · (1 + 1

30)31$, while (1 + 1
30)30 < 2700, i.e.

another 9 pairs of workdays are necessary.

2. Find limx→∞
(
1− x

1
2x

)
· x
2 lnx .

Express the answer as a decimal fraction.

Answer: −1/4.

Solution:

lim
x→∞

(
1− x

1
2x

)
· x

2 lnx
= lim

x→∞

(
1− e

ln(x)
2x

)
· 2x

lnx
· 1

4
.

Suppose that t = ln(x)
2x ; t→ 0 for x→∞. Then we have

lim
x→∞

(
1− e

ln(x)
2x

)
· 2x

lnx
· 1

4
= lim

t→0

(
1− et

)
/t · 1

4
= −1

4
.

.

3. Find the maximum number of parts into which a plane can be divided
by the graphs of 10 quadratic trinomials aix

2 + bix+ ci, i = 1, . . . , 10.

Answer: 101.

Solution:

Any two graphs of quadratic trinomials can intersect at no more than
two points. If a trinomial intersects with each of k other trinomials
at two points, then the plane is divided into 2k + 1 parts. The first
trinomial divides the plane into 2 = 1 + 1 parts. Thus, if we have
k graphs of quadratic trinomials, each pair of which intersect at two
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points, then the number of parts the plane will be divided into equals
1 + 1 + 3 + . . .+ 2k − 1 = k2 + 1. If k=10, then k2 + 1 = 101.

Now let us build an example where any two graphs intersect at ex-
actly two points (and all these points are different for all the pairs of
trinomials). In order to do that, we can examine tapering graphs of
trinomials with vertex at zero and decreasing ordinate of vertex. In
other words, let ai be positive increasing numbers, bi = 0 for any i,
and ci be decreasing numbers.

4. Calculate
∫ 5
−5

dx
1+2arctan x .

Answer: 5.

Solution:

Since the function arctg(x) is symmetrical and odd, we obtain

∫ 5

−5

dx

1 + 2arctanx
=

∫ 5

−5

dx

1 + 2− arctanx

.

Hence,

∫ 5

−5

dx

1 + 2arctanx
=

∫ 5
−5

dx
1+2arctan x +

∫ 5
−5

dx
1+2− arctan x

2
=

=

∫ 5

−5

dx

2
·
(

1

1 + 2arctanx
+

1

1 + 2− arctanx

)
=

∫ 5

−5

dx

2
·
(

1

1 + 2arctanx
+

2arctanx

1 + 2arctanx

)
=

=

∫ 5

−5

dx

2
·
(

1 + 2arctanx

1 + 2arctanx

)
=

∫ 5

−5

dx

2
· 1 = 5.

5. The sequence {an}∞n=1, an = n
π sin(2πen!) is given. Find limn→∞ an.

Answer: 2.

Solution: e =
∑∞
k=0

1
k! . Consequently,

en! =
n∑
k=0

n!

k!
+

1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . . =

= K +
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . .

for some integer K. Therefore,

sin(2πen!) = sin 2π

(
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . .

)
,
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which means that

lim
n→∞

an = lim
n→∞

n

π
·2π

(
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . .

)
,

since sin(t)/t→ 1 for small t, and hence the sinus can be removed. In
our case,

t = 2π

(
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . .

)
.

Next, we obtain lim
n→∞

n
π ·2π

(
1

n+1 + 1
(n+1)(n+2) + 1

(n+1)(n+2)(n+3) + . . .
)

=

= lim
n→∞

2n · 1

n+ 1
= 2.

.

6. eA =
∑∞
n=0A

n/n! (A0 = E). It is known that AB 6= BA, and the
coefficients A and B are real. Is it possible that eAeB = eBeA ? If the
answer is positive, give an example.

Answer: It is possible.

Solution: Let A =

(
0 π
−π 0

)
, and B be an arbitrary matrix that

does not commute with A. It is sufficient to demonstrate that eA =
−E. If so, the matrix commutes with all matrices, including eB. Let

B =

(
0 ϕ
−$ 0

)
. Then B2k =

(
(−1)kϕ2k 0

0 (−1)kϕ2k

)
and

B2k−1 =

(
0 (−1)kϕ2k−1

(−1)k+1ϕ2k−1 0

)
.

Therefore,

eB =

 ∑∞
k=0(−1)k ϕ2k

(2k)!

∑∞
k=0(−1)k ϕ2k+1

(2k+1)!

−
∑∞
k=0(−1)k ϕ2k+1

(2k+1)!

∑∞
k=0(−1)k ϕ2k

(2k)!

 =

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
.

In our case, ϕ = π, and therefore, A = −E.

7. The sequence Q1(x) = x,Qn+1(x) = Qn(x+1)
Qn(x)

, n ≥ 1 is given. Let

Qn(x)− 1 = An(x)/Bn(x), where A and B are polynomials. Find the
ratio of the leading coefficients of A7(x) and B7(x).

Answer: -5!=-120.

Solution:

Let us denote by cn the ratio of the leading coefficients An(x) and
Bn(x). Obviously, for some integer k ≥ 0, Qn(x) = 1 + cn

xk
+ o( 1

xk
)
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as x → ∞. Consequently, ln(Qn(x)) = cn
xk

+ o( 1
xk

) as x → ∞ since

ln(1 + t)/t → 1, at t → 0 (in our case t = cn
xk

+ o( 1
xk

)). Let us denote
by ∆(f) = f(x+ 1)−f(x) the difference derivative operator with step
size 1. Then ∆(ln(x)) = 1

x +
∑∞
k=2 dk

1
xk

and

∆

(
1

xk

)
= −k 1

xk+1
+

∞∑
l=k+1

cl
1

xk+l
.

(The asymptotic behavior of the difference derivative is the same as
the asymptotic behavior of the regular derivative). It follows that
∆6(ln(x)) has the same leading coefficient as ln(x)(6), i.e. (−1)55!.

8. Let VT designate the volume of the unit neighborhood of a regular
tetrahedron T with unit edge (i.e. the set of points for which the
distance from the tetrahedron is less or equal to one). Let VO designate
the volume of the unit neighborhood of a regular octahedron O with
unit edge. (Regular octahedron is an octahedron with 8 equilateral
triangles as faces). Find VO + 2VT .

Answer:
√
2
2 + 4

√
3 + 16π.

Solution: Let VM (ε) denote the volume of the -neighborhood of the
convex polyhedron M .

VM (ε) = c0 + c1ε+ c2ε
2 + c3ε

3,

where c0 is the volume of M , c1 is its surface area, c2 =
∑
li(π−αi) (li

is the length of its i− th edge, αi is the corresponding dihedral angle,
c3 = 4π/3 is the volume of a unit sphere).

The volume of a regular tetrahedron with edge
√

2 is 1/3. (It can be
inscribed in a unit cube, so that the remaining part of the cube consists
of 4 tetrahedrons the volume of each of which is 1/6). It follows that
the volume of a regular tetrahedron with edge 1 is 1

3
√
8
. An octahedron

with edge
√

2/2 can be inscribed in a unit cube connecting the centers
of its faces. This octahedron is the union of two pyramids the with
base area of which equals 1/2, and the altitude 1/2. Therefore, its
volume equals 1/6. It follows that the volume of a unit octahedron

equals
√
2
3 , and if we add twice the volume of a unit tetrahedron the

sum will be
√
2
2 . The area of an equilateral unit triangle equals

√
3/4,

four such triangles form a tetrahedron, and eight - an octahedron.
Hence, their surface areas equal

√
3 and 2

√
3, respectively, and their

sum equals 4
√

3.

The dihedral angle of a tetrahedron together with the dihedral angle of
an octahedron equal π, since the continuation of the faces of a regular
octahedron inscribed in a cube is the union of two regular tetrahedra
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inscribed into it. A tetrahedron has 6 edges, and an octahedron - 12.
Therefore, the sum of the coefficients of ε2 will equal 12π. Summing
up the components and assuming that ε = 1, we obtain the answer.
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