
Individual Olympiad
1. Find the antiderivative

∫
ln(x+

√
x2 + 1)dx.

Solution:∫
ln(x+

√
x2 + 1)dx = x ln(x+

√
x2 + 1)−

∫
xd ln(x+

√
x2 + 1) = x ln(x+

√
x2 + 1)−

∫
x√

x2 + 1
dx =

x ln(x+
√
x2 + 1)−

√
x2 + 1

2. Find limx→0
sin(x)−arcsin(x)

x3 .

Solution: sin(x) = x − x3

6 + o(x3), and therefore arcsin(x) = x +
x3

6 + o(x3). Hence, sin(x) − arcsin(x) = −x3

3 + o(x3). Consequently,

limx→0
sin(x)−arcsin(x)

x3 = −1
3 .

3. At the initial moment the number 0 is written on a board. Every
second the number that was written previously, x, is erased, and the numbers
x − 1 and x + 1 are written instead of it, so that by the 10th second 1024
numbers will be written. Find the average of their squares.

Solution: Note that (x−1)2+(x+1)2

2 = x2+1. Hence

∑k

i=1
(xi+1)2+

∑k

i=1
(xi−1)2

2k =∑k

i=1
x2
i

k +1. Thus, the operation increases the arithmetic mean of the squares
of the recorded numbers by 1. At first it was zero, and after 10 operations
the result will be 10.

4. Regarding the matrices A,B,C it is known that AB = BA,CB =
BC, and that B 6= λE for any λ (E is the identity matrix, λ is a complex
number). Is it true that AC = CA ?

Answer: Not necessarily.
Solution. Let V1 and V2 be subspaces of the four - dimensional matrix

space V , V = V1 + V2, dim(V1) = dim(V2) = 2, BV1 = V1, AV2 = V2,
CV2 = V2, projections of A and C on V1 do not commute.

Now let’s give a counter-example in explicit form.

A =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 B =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 C =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

5. Baron Munchausen has a sufficient number of boards - segments of
length 1 meter. He wants to get to the center of a lake the radius of which
is 1 kilometer. He places the boards one after another. Each end of each
board can be placed either on the shore or on a previously placed board.
Can he do it?

Answer: Yes, he can!
Solution. If you put the ends of a board on a circle of radius R, then

its middle will be situated at a distance ∆R from its border. And in this
case ∆R increases with decreasing R. The boards can easily be placed in
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such a way that a rim the width of ∆R/2 would be separated from the rest
of the lake by a board. Repeating the process, we get to the center of the
lake.

6. Is it possible to position on a plane 32 circles in such a way that each
of them touches either 5 or 6 others?

Answer: It is possible. Consider a soccer ball - a polyhedron with 12
regular pentagonal and 20 hexagonal faces. Into each of them we inscribe a
circle. Next, we stereographically map the sphere into a plane. The circles
will be moved into circles.

7. Prove that all complex roots of polynomial P (x) = 1 + x + x2/2 +
. . . xn/n! are modulo at least 1.

Solution. Clearly, it suffices to consider the case x < 0. P (x) is a
partial sum of the Taylor series for ex. According to the theorem on the
remainder P (x) − ex = θn+1/(n + 1)! for some θ ∈ [x, 0]. If |x| < 1, then
|θ| < 1. If in this case P (x) = 0, then θn+1/(n + 1)! = −ex. Hence
|θn+1/(n+1)!| = |e−x| > e−1. In addition, 1/(n+1)! > |θn+1/(n+1)!| since
|θ| < |x| < 1. Thus we have 1/(n+ 1)! > e−1, which for n ≥ 2 is impossible.
The case where n = 1 is to be considered separately.

8. n points Xi are marked on a unit circle. Prove that it is possible to
add another point, Y , such that the product of the distances |Y Xi| would
be greater than 1.

Solution. Consider the circle as a unit circle on a complex plane. Con-
sider the polynomial

∏
(x − xi). The module of its value at the origin is 1.

The module of its value at point X of the unit circle is equal to
∏
|x−xi|. It

is known that the maximum absolute value of an analytic function (such as a
polynomial) is achieved on the boundary. Consequently, the value

∏
|x−xi|

(i.e. the product of the distances to the marked points) at some point of the
unit circle is definitely greater than unity.

9. There is an unlimited number of boxes, 10 chips can be placed in each
box. The first player puts two white chips in any two boxes or both chips
in one of the boxes, the second player puts one black chip in any box.

The goal of the first player is to fill one of the boxes with 10 white chips.
a) Can the first player achieve this goal?
b) What is the minimal number of moves needed for this?
Answer a) Yes. b) 128.
Solution. a)
Let the first player begin with putting one chip in two different boxes

during every move. The second player can only put a black chip in one box,
so that after every move we get one additional box with one white chip.
Thus, it is possible to obtain n boxes with one white chip in each. Now, let
the first player choose two of these boxes during every move and add a chip
to each. The second player can only ’spoil’ one box by putting a black chip
in it, and consequently we obtain n/2 boxes exactly with two white chips
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in them. The first player can continue this process, and eventually obtain
n/1024 boxes filled with white chips.

b) Let the weight of a box be defined as the value 2n − 1, if the box
contains exactly n white chips and nothing else (in particular, 20− 1 = 0, if
the box is empty), and if the box contains a black chip - then let its weight
be 0. Let black put his chip in the box which contains no black chips and the
maximal number of white chips. In this case the total weight of the boxes
after white makes his move and black responds will increase by no more
than 1. During the last move white fills a box with two chips after which
the game is terminated (and so are black’s moves). The smallest possible
total weight in this situation is 127, and another one 128- th and final move.
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