
1. Let f(x) = 1
x2+1

. Find f (6)(0) (the value of the sixth derivative of the
function f(x) at zero).

Answer: −720.

Solution: We expand the given function into a Taylor series at the
point x = 0:

f(x) = 1− x2 + x4 − x6 + · · ·
The coefficient of x6 equals −1, but it also equals f (6)(0)/6! . And thus
we obtain the answer:f (6)(0) = −6!.

2. A mushroom is called bad if there are 10 or more worms in it. A basket
contains 91 bad mushrooms and 10 good mushrooms. Is it possible that
after some of the worms crawl off the bad mushrooms and onto the good
ones, all of the mushrooms will become good?

Answer: It is not possible.

Solution: Since a bad mushroom has at least ten worms and the basket
contains 91 bad mushrooms, there must be at least 910 worms in the
basket. The total number of mushrooms in the basket is 101. If all of
the mushrooms in the basket became good, it would mean that none of
them would have more than 9 worms, and therefore, the total number
of worms could be no greater than 909. But since the total number of
worms must remain the same as it was at the beginning, this situation
is impossible.

3. Suppose that M is a point on side AB of triangle ABC, such that
AM : MB = 2, and N is a point on side BC of the same triangle, such
that BN : NC = 2. Let X denote the point of intersection of segments
CM and AN . Find AX : XN and CX : XM .

Answer: AX : XN = 6, CX : XM = 3
4

.

Solution. There are two possible solutions:

1) Let us introduce the notations ~u =
−→
BA, ~v =

−−→
BC and expand the

vector
−−→
BX in (~u,~v) basis in two ways. On the one hand,

−−→
AN = −~u+ 2

3
~v

and therefore,
−−→
AX = α

−−→
AN = −α~u+ 2

3
α~v for some α, and thus,

−−→
BX =

~u+
−−→
AX = (1− α)~u+ 2

3
α~v. On the other hand,

−−→
CM = 1

3
~u− ~v

and therefore,
−−→
CX = β

−−→
CM = −1

3
β~u − β~v for β, and thus,

−−→
BX =

~v +
−−→
CX = 1

3
β~u+ (1− β)~v.
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By equating the coefficients of these two linear representations we ob-
tain a linear system of equations for α and β:{

1− α = 1
3
β

2
3
α = 1− β

,

by solving which we find that , α = 6
7
, β = 3

7
. And from this we can

easily obtain the desired ratios: AX : XN = α
1−α = 6, CX : XM =

β
1−β = 3

4
.

2) Let us place different weights at the three apexes of the triangle: a
weight of 1 at point A, a weight of 2 at point B, and a weight of 4 at
point C. We will now find the center of mass of the resulting system
of material points in two different ways. Firstly, we can substitute the
weights at points A and B for a single weight the mass of which is
3, situated at their center of mass point M . Therefore, the center of
mass must be situated on the segment CM and it must divide it into
two segments the ratio of which is 3 : 4. Similarly, by substituting
the weights at points B and C for a single weight of 6 situated at
their center of mass point N , we find that the center of mass must be
situated on the segment AN and that it divides this segment into two
segments the ratio of which is 6:1. Therefore the center of mass has
to be situated at the intersection of the segments CM and AN which
is point X, and it must divide these segments according to the ratios
given in the answer.

4. It is known that function f(x) is even, and that function g(x) =
f(2011 − x) is odd. Prove that f(x) is a periodic function and find
its period.

Answer: 8044.

Solution.

According to the problem f(x + 4022) = f(2011 − (−x − 2011)) =
g(−x− 2011) = −g(x + 2011) = −f(2011− (x + 2011)) = −f(−x) =
−f(x)f(x+4022) = −f(x). Thus, f(x+8044) = −f(x+4022) = f(x).
It follows that f(x+8044) = −f(x+4022) = f(x). And therefore 8044
is the period of function f(x).

Note: Any multiple of 8044 will also be a period of function f(x).
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5. One of the faces of a unit cube has a circle inscribed in it, and another
face of the same unit cube is circumscribed by a circle. Find the shortest
distance between two points that lie on the circumferences of these two
circles.

Answer: (
√

3−
√

2)/2.

Solution.

Let us construct two concentric spheres, the centers of both of which
coincide with the center of the cube. The surface of the first of these
spheres contains the circumference of the inscribed (smaller) circle,
and the surface of the second contains the circumference of the cir-
cumscribed (larger) circle. The projection of the circumference of the
smaller circle on the surface of the larger sphere taken from the center
of the cube intersects the circumference of the larger circle. It follows
that there exists a ray the initial point of which is the center of the
cube, which intersects the circumferences of both circles. The distance
between the points of intersection obviously equals the difference of the
radii of the spheres, and this difference, which equals (

√
3−
√

2)/2 , is
the answer to the question.

6. Let A and B be square matrices of the third order, and furthermore,
let all the elements of matrix B equal unity. It is known that detA = 1,
det(A+B) = 1. Find det(A+ 2011 ·B).

Answer: 2011.

Solution:

Let us examine the function f(x) = det(A+ x ·B). We can transform
the determinant by subtracting the first row from the second and third
rows, and expand the resulting determinant along the first row. It
is obvious that f(x) is a linear function, i.e. f(x) = ax + b. Since
a = 1, b = 0, it follows that a = 1, b = 0. Therefore, f(x) = x and
det(A+ 2011 ·B) = f(2011) = 2011.

7. A particle is moving along a straight line. The direction of its movement
can change, but its acceleration at any given moment does not exceed
1 m/sec in absolute value. One second after it begins moving the
particle returns to its starting point. Prove that its speed 0.5 sec after
it begins moving is no greater than 0.25 m/sec.
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Solution:

In the following calculations it is implied that all the time intervals
are expressed in seconds and all the intervals of length measured in
meters. Let v(t) be the speed and a(t) the acceleration of the given
particle at time t. According to the problem |a(t)| = |v′(t)| 6 1 and∫ 1

0
v(t)dt = 0. We must estimate v(0.5). In order to do this, let us

examine its absolute value:

|v(0.5)| = |v(0.5)− 0| =
∣∣∣∣v(0.5)−

∫ 1

0

v(t)dt

∣∣∣∣ =

=

∣∣∣∣v(0.5)

∫ 1

0

dt−
∫ 1

0

v(t)dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

(v(0.5)− v(t)) dt

∣∣∣∣ .
Let us use Lagranges theorem: v(0.5) − v(t) = v′(c)(0.5 − t) , where
c(t) ∈ [0.5; t]. Thus

|v(0.5)| =
∣∣∣∣∫ 1

0

v′(c)(0.5− t)dt
∣∣∣∣ 6 ∫ 1

0

|v′(c)(0.5− t)| dt =

=

∫ 1

0

|v′(c)| · |(0.5− t)|dt.

But |v′(t)| 6 1. Therefore,

|v(0.5)| 6
∫ 1

0

|0.5 − t|dt =

∫ 0.5

0

(0.5 − t)dt +

∫ 1

0.5

(t − 0.5)dt =
1

4
.

8. Does a real function f(x), which is defined on the entire real axis, and
such that f(f(x)) = −x2011 for every x ∈ R exist?

Answer: It does not.

Solution:

Let us assume the opposite, i.e. that such a function does exist. Let
s = f(0). Then f(s) = f(f(0)) = −02011 = 0. In addition s =
f(0) = f(f(s)) = −s2011. Therefore s = 0 and thus s(0) = 0. Let
u = f(1). Then f(u) = f(f(1)) = −12011 = −1. Let v = f(1). This
implies that f(f(u)) = v, f(f(v)) = u. Therefore, f(f(f(f(u)))) = u ,
i.e.u2011

2
= u. And it then follows that u = 0, 1 or −1. Let us examine
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each of these three cases separately. The equality u = 0 contradicts
the following two equalities: f(u) = 1 and f(0) = 0. If u = 1, then
since u = f(1), we obtain f(1) = 1 and f(f(1)) = 1. This too is a
contradiction. If u = 1, then since f(u) = 1, we obtain f(1) = 1 and
f(f(1)) = 1. Once again, a contradiction.

9. Solve the following equation: |2x − 3y| = 1. It is known that x and y
are positive integers.

Answer: x = 1, y = 1;x = 2, y = 1;x = 3, y = 2.

Solution:

For x = 1 and or x = 2, the solutions can be found easily. Next
we consider the case where x > 3. Let us examine separately the
case where the argument of the absolute value is positive and the case
where it is negative. First case: 2x − 3y = 1. In this case 3y ≡ −1
mod 8 , which is impossible. Second case: 2x − 3y = −1. In this case
3y ≡ −1 mod 8, which means that y is an even number. Therefore,
2x = (3y/2 + 1)(3y/2 − 1). Each of the two factors on the right side of
this equality must be a power of two, which is possible only for y = 2.

10. In the Republic of Anchuria a political party that has more than one
member can exist for no longer than one day. The following day the
party splits into two fractions, and each of those declare themselves
a new party. Whenever a new party is created each of its members
receives a membership card. On a certain day 2011 citizens of this re-
public created a new political party. After a while, following numerous
splits, 2011 parties consisting of one member each were created. What
are the minimal and the maximal number of membership cards that
could have been issued during this entire period of time?

Answer: 24095 and 2025076.

Solution:

Let us denote the number of membership cards that were issued by
h(n) for the case where n was the initial number of party members
and each split resulted in two maximally unequal factions (i.e., when
one of the resulting factions consisted of only one member). Similarly,
we denote the number of membership cards by l(n) for the case where
each split resulted in two maximally equal factions (i.e., the party either

5



split into two equal factions, or the difference between the number of
members in each of the two factions was one, depending on whether
the number of members in the party was even or odd). This definition
implies that the functions h(n) and l(n) are defined by the following
recurrence relations:

h(1) = 1; h(n) = h(1) + h(n− 1) + n , when n > 2;

l(1) = 1; l(n) = l(bn/2c) + l(dn/2e) + n , when n > 2,

where bxc is the greatest integer that does not exceed x, and dxe is the
smallest integer that is greater or equal to x. We can now find explicit
formulas for functions h(n) and l(n):

h(n) =
n2 + 3n− 2

2
, l(n) = (r + 1)n+ 2s,

(in the above equations and hereafter r and s are uniquely determined
non-negative integers, such that n = 2r + s and 0 6 s < 2r). They can
be easily proved by mathematical induction.

Let us also introduce the following two functions:

h′(n) = h(n+ 1)− h(n) = n+ 2,

l′(n) = l(n+ 1)− l(n) = r + 3.

Note that both of these functions l′(n) and h′(n) are non-decreasing.
Let us now prove by induction that l(n) and h(n) are, respectively,
the minimal and the maximal number of membership cards issued if
the initial party consisted of n members. The basis of the induction
is obvious. The inductive step can be reduced to proving that the
inequalities

h(n1) + h(n2) 6 h(1) + h(n− 1),

l(n1) + l(n2) > l(bn/2c) + l(dn/2e)

hold, provided that n1+n2 = n. Let us prove a more general statement,
namely that if n1 +n2 = const, then the expressions h(n1) +h(n2) and
l(n1) + l(n2) and the difference |n2 − n1| increase simultaneously. In
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order to show that this is true it is sufficient to prove that the following
inequalities

h(n1) + h(n2) 6 h(1) + h(n− 1),

l(n1) + l(n2) > l(bn/2c) + l(dn/2e)

hold, provided that n1 6 n2.

These inequalities can be reduced to the following identical inequalities:

h′(n1 − 1) 6 h′(n2),

l′(n1 − 1) 6 l′(n2),

which hold by virtue of the already proven monotonicity of the func-
tions h′(n) and l′(n). Therefore, the minimal number of membership
cards that could have been issued equals l(2011) = 24095, and the
maximal number equals h(2011) = 2025076.
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